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The dynamics of a thick layer of viscous liquid flowing down a thin vertical fibre is
investigated. Three qualitatively different regimes of the interfacial patterns in the form
of beads were observed experimentally. Two typical regimes at relatively small flow
rate are described reasonably well by the creeping-flow model equation proposed here.

1. Introduction
Flows of liquid films on solid substrates have been the subject of interest because

of the range of phenomena that they display (waves, rupture, contact lines, corners
and cusps) and the importance of the applications in which they occur (photographic
films and papers, depth probes, coating, mass/heat transfer). The ability to contour
the free surface by ‘designing’ the proper flow gives one the potential of creating in
situ objects of interest.

When the film is ostensibly planar, surface tension acts as a stabilizing mechanism
that counterbalances the destabilization of Marangoni effects, or other externally
imposed forces. See Lin (1983), Chang (1994) and Oron, Davis & Bankoff (1997) for
reviews.

When the film is ostensibly cylindrical of radius a, surface tension acts to destabilize
the interface by the usual Rayleigh (1878) mechanism. There is a tendency for the
film to break up into axisymmetric droplets within the axial length scale L > 2πa;
the infinitely long film cylinder is always unstable to breakup.

When there is axial flow in the film, the shear competes with capillarity; the breakup
is restrained and instability is confined to much longer scales L� 2πa (Xu & Davis
1985). This effect has been verified experimentally by Dijkstra & Steen (1991) using
thermal forcing on a cylinder with a coaxial wire along the centreline. Experiments
by Quéré (1990) and De Ryck & Quéré (1996) showed that mean shear in a film
equilibrates growing disturbances. As a result, finite-amplitude interfacial waves were
observed and breakup is avoided. The dynamics, structure and interaction of the
drops were not investigated.

In the present work a thick viscous film of castor oil on a vertical wire is observed
to become unstable and form beads, as shown in figure 1. The Reynolds number of
the flow is very small, typically 10−2.

It turns out that such creeping flows on thin fibre show a very rich dynamical
behaviour, which apparently has not previously been considered experimentally or
theoretically.

The theoretical description of the axisymmetrical interfacial dynamics has usually
been in terms of the long-wavelength evolution equations using a technique of Benney
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Figure 1. The typical droplet structures observed in experiments. Three wave profiles are
measured at decreasing flow rates. The small marks on the ruler are 1 mm apart.

(1966). Such equations have been derived by Lin & Liu (1975) and by Atherton &
Homsy (1976). Frenkel (1992) considered the limiting case of large cylinder radius
(small film thickness) and derived a simple Benney-like equation for the film evolution.
Kalliadasis & Chang (1994), Kerchman & Frenkel (1994) and Chang & Demekhin
(1999) investigated the dynamics of Frenkel’s (1992) equation, and compared the
predictions with the experimental data of Quéré (1990).

The above papers deal with equations derived under the assumption of small film
thicknesses. In our experiments, however, the film is at least twice as thick as the
fibre radius. Therefore, the previously derived equations do not apply here. A model
system will be posed that will describe Stokes flow, (constant) surface tension and
gravity. When this system is solved, it predicts patterns close to those in figure 1.

2. Experimental results
The experimental part of the study was performed in the laboratory of Professor

H.-C. Chang, Department of Chemical Engineering, University of Notre Dame. The
help of Dr I. Veretennikov and Dr A. Indeikina in the construction of the experimental
setup and taking of measurements was invaluable; we are deeply grateful to them.

The experimental setup is shown in figure 2(a). Castor oil (density ρ = 0.961 g cm−3,
kinematic viscosity ν = 4.4 cm2 s−1, surface tension γ = 31 g s−2) coloured with SU-
DAN IV was placed in a large tank with a hole of about 1 mm diameter in its base.
Nylon fishing line of radius 0.25 mm and length 2.5 m is passed downward through
the hole and tethered to a weight that restrained the line to remain vertical. The flow
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Figure 2. (a) The experimental setup. (b) The geometry of the film flow down a fibre.

Mean film Distance Velocity Height Minimal
Flow rate thickness between of drops, of drops, thickness
Q, mm3 s−1 h0, mm drops, cm cm s−1 mm of film, mm

Regime (a) 21.8 0.73 3.0 2.5 1.47 0.50
Regime (b) 11.5 0.62 0.62 0.54 1.02 0.20
Regime (c) 5.50 0.51 3.6 1.20 1.20 0.25

Table 1. The parameters of the experiments for the pictures on figure 1.

over the fibre was photographed using a high-resolution Kodak MegaPlus 1.6 digital
camera at a position about 2 m below the orifice.

Figure 1 and table 1 show the results of the experimental runs at three different
flow rates. Due to the difference in the optical density of the fibre and the oil, the
fibre looks somewhat thicker than it actually is.

To find the equilibrium thickness h0 of the film, one solves the equation and
boundary conditions for unidirectional parallel flow on a fibre of radius r̄0:

g

ν
+ r−1(rWr)r = 0, W (r̄0) = 0, W ′(h0 + r̄0) = 0. (2.1)

One finds that

W (r) =
g

4ν

[
2(h0 + r̄0)

2 log
r

r̄0
− r2 + r̄2

0

]
. (2.2)
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Hence, the flow rate Q is the following function of the equilibrium thickness h0:

Q(h0) = 2π

∫ r̄0+h0

r̄0

rW (r) dr (2.3)

=
πg

8ν

[
4 (h0 + r̄0)

4 ln
h0 + r̄0

r̄0
− h0(3h

3
0 + 12h2

0r̄0 + 14h0r̄
2
0 + 4r̄3

0)

]
. (2.4)

For a given Q and r̄0, one obtains h0.
As can be seen from figure 1, three distinct regimes of the flow were observed.

The first regime is observed for relatively large flow rates, figure 1(a). In this case,
the drops are large and move rapidly. The film between the drops is relatively thick
and practically uniform. The average distance between the drops is relatively large,
though the separation between the individual drops slightly varies. The large drops
sometimes collide with each other in an irregular fashion; the process of collision is
very fast.

In the second case, figure 1(b), the drop train is highly organized; the shape, speed
and distance between the drops do not change over time. A detailed investigation of
the digital image has shown the periodicity of the train. The speed and size of the
drops are substantially smaller than those in regime (a). This regime was observed in
a relatively small range of flow rates.

For very small flow rates, figure 1(c), the structure of the drops changes in an
unexpected fashion. Namely, the drops become larger, they are substantially more
separated in space, and the film in the space between the large drops is not uniform,
but shows a periodic growth of disturbances. It is remarkable that the size and speed
of the drops in regime (c) are larger than those in regime (b), though the flow rate in
regime (c) is smaller. Since the distance between the drops is large, figure 1(c) shows
only one large drop. Large drops collide with growing lobes ahead of them, consume
them, and continue to move. During the collision, the large drops move faster. As a
result, the instantaneous velocity of large drops changes periodically in time.

Overall, it is striking that this simple flow shows such rich interfacial dynamics,
even though its Reynolds number is very small. Since the flow is axisymmetric, the
diminishing of the flow rate from regime (a) to regime (c) results in relatively slow
changes of all dimensionless parameters (see table 2 below).

Quéré (1990) has shown that when h0 exceeds a critical thickness hc, large capillary
drops are formed. He obtained the relation hc = αr̄3

0/H
2, where the capillary length

H = (σ/ρg)1/2. Kalliadasis & Chang (1994) constructed the lone stationary pulse
and obtained the same law theoretically with numerical factor α = 1.68. For the
experiments of figure 1 H = 1.8 mm, and hc = 0.008 mm = 8 µm. In experiments by
Quéré (1990) with smaller surface tension and larger r̄0, it was found that hc = 17 µm.
The characteristic initial thickness h0 of the film in the experiments in figure 1
is typically 0.5 mm. Therefore, in our experiments the film is about two orders of
magnitude thicker than the critical thickness hc. As a result, the observed interfacial
waves are highly nonlinear.

3. Statement of the problem
Consider an axisymmetrical flow of liquid down a vertical fibre under gravity, figure

2(b). The surrounding gas is assumed to be weightless, quiescent, and inviscid with
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r0 σ−1 R
Regime (a) 0.34 6.20 0.020
Regime (b) 0.40 8.60 0.012
Regime (c) 0.50 12.5 0.007

Table 2. The dimensionless parameters for the experimental results on figure 1.

constant pressure p0. The governing equations are

r−1(ru)r + wz = 0, (3.1a)

R(wt + wwz + uwr) = 1− pz + r−1(rwr)r + wzz, (3.1b)

R(ut + wuz + uur) = −pr + [r−1(ru)r]r + uzz. (3.1c)

Here r, z are the streamwise and radial coordinates, respectively, in units of the un-
perturbed film thickness h0; u, w are the corresponding velocity components, referred
to W̄ = gh2

0/ν, where g is the gravity acceleration; p is the pressure in units of ρgh0;
t is the time referred to h0/W̄ ; R = W̄h0/ν = gh3

0/ν
2 is the Reynolds number.

At the fibre surface, there is no penetration and no slip:

u(r0) = w(r0) = 0, (3.2a)

where r0 = r̄0/h0.
At the free surface at r = h(z, t) there is zero shear stress:

(1− h2
z)(wr + uz) + 2hz(ur − wz) = 0. (3.2b)

Normal stress is balanced by surface tension times curvature:

p− p0 + 2[(wr + uz)hz − ur − h2
zwz] + σ−1 2H = 0. (3.2c)

Here σ = ρgh2
0/γ is the Bond number, where γ is the surface tension, and the mean

curvature 2H is

2H =
hzz

(1 + h2
z)

3/2
− 1

(r0 + h)(1 + h2
z)

1/2
. (3.3)

The kinematic boundary condition on the free surface is

ht + whz − u = 0. (3.4a)

Written in conservative form, (3.1a) and (3.4a) are

ht +
1

r0 + h

∂

∂z

∫ r0+h

r0

w r dr = 0. (3.4b)

Equations (3.1a)–(3.1c) together with boundary conditions (3.2a)–(3.2c) and (3.4b)
constitute a free-boundary problem for h(z, t).

In terms of dimensionless variables defined above the three regimes shown on figure
1 are specified by the parameters shown in table 2.

4. Linear stability problem
The linear stability analysis of the problem provides the first insight in the un-

derlying interfacial dynamics. The numerical study of the pertinent Orr–Sommerfeld
eigenvalue problem is the subject of the present section.
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Figure 3. (a) Comparison of exact growth rates, Re(ω), the solid curve, versus that of the asymptotic
theory, the dashed line. The flow parameters are given in table 1 and correspond to the conditions
of experiment of figure 1 given in table 2. (b) Comparison of exact growth rate, Re(ω), solid line,
versus the asymptotic theory, dashed line, for the thin films. Here R = 0 for both cases.

The steady-state unidirectional solution for (3.1a)–(3.1c) is

h = 1, p = p0, W (r) =
1

4

[
2(1 + r0)

2 log
r

r0
− r2 + r2

0

]
. (4.1)

The linear stability analysis of flow (4.1) includes the following manipulations: lin-
earization (3.1a)–(3.1c), (3.2a)–(3.2c) and (3.4b) near (4.1), introduction of the stream
function ψ(z, r, t) for the disturbed flow, and use of the normal mode decomposition,

ψ(z, r, t) = φ(r)eikz+ωt, h = 1 + η, η = aeikz+ωt. (4.2)

The result is the Orr–Sommerfeld eigenvalue problem for φ(r) in cylindrical ge-
ometry (Lin & Liu 1975; Atherton & Homsy 1976; Homsy & Geyling 1977). We
concentrate on a temporal formulation of the stability problem, with real k and
complex ω.

A shooting method combined with the Newton–Raphson algorithm has been used
to solve the boundary-value problem. The procedure involves two main steps: a guess
of initial values for integration, and iterations to reach the solution. As an initial guess,
cubic extrapolation of the initial values of solutions for smaller k has been chosen.
For very few initial points, the long-wavelength asymptotic solution was used as an
initial guess. The Jacobian matrix was evaluated by second-order central differencing.
The Runge–Kutta fourth-order method was used for the integration.

The results of the computations for cases (a), (b), and (c) are shown on figure
3(a). In these computations, the Reynolds number is taken to be zero. It was checked
that the full dispersion relations (with very small but finite Reynolds numbers R and
not shown here) are very close to those with zero Reynolds number. The dispersion
relations for the thin film are shown in figure 3(b). We shall use the curves obtained
to test the evolution equation posed in the next section.

5. Nonlinear evolution equation
There are several possibilities for the derivation of simplified evolution equations

that describe the interfacial dynamics in the terms of surface shape. First, the long-
wavelength expansions by Benney (1966) can be adopted. In the application of the
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approach to the planar film flows down an incline, the surface tension is assumed to
be large. As a result, the waves are long, surface slopes are small, and surface-tension
effects are retained in the leading-order approximation.

For the film flow down the cylinder the situation is different. Here the surface
tension affects both streamwise and radial disturbances, and even if surface tension is
large, this does not guarantee that the waves will be long. As a result, the typical size
of the disturbances is affected by the shear, and the surface slopes might be of order
unity. As may be seen from the experimental pictures (figure 1), though the waves are
quite long, wave gradients may be of order unity. This means that formal application
of Benney expansions will require several successive iterations. This approach does
not lead to a simple model.

An approximation of boundary-layer type might also be contemplated as an
alternative (see Chang 1994). Such an approach does not lead to a simple model, even
for creeping flow.

As a result, we take the following view. We consider the equations of creeping
flow. We assume that in the normal-stress condition the pressure jump dominates the
viscous forces: a small capillary number approximation. As a result,

p = p0 + σ−1

[
hzz

(1 + h2
z)

3/2
− 1

(r0 + h)(1 + h2
z)

1/2

]
, (5.1)

where p0 is the atmospheric pressure. Note that we include the full curvature term
without approximation as was proposed in other contexts by Rosenau, Oron &
Hyman (1992). This is motivated by the large amplitude of the waves, and relatively
large interface gradients. We assume that the velocity profile is slowly varying, and
neglect the wzz term in the streamwise momentum equation (3.1b), and all terms of
order ∂/∂z in boundary condition (3.2b). The velocity profile is therefore described
by the following system:

1− pz + r−1(rwr)r = 0, w(r0) = 0, wr(r0 + h) = 0. (5.2)

Solving (5.2) and substituting the result in kinematic boundary condition (3.4b) results
in the following equation:

ht +
1

r0 + h

[
Q(h) + σ−1Q(h)

(
hzz

(1 + h2
z)

3/2
− 1

(r0 + h)(1 + h2
z)

1/2

)
z

]
z

= 0, (5.3)

where

Q =
1

16

[
4(h+ r0)

4 log
h+ r0

r0
− h(3h3 + 12h2r0 + 14hr2

0 + 4r3
0)

]
. (5.4)

Equation (5.3) has not been derived asymptotically; it is a model equation. We shall
assess the applicability of the model from a comparison of its linear stability with the
full linear stability problem, and from a direct comparison of the numerical simulation
of (5.3) with experiment.

In the context of the film flow on the fibre, equation (5.3) is asymptotically valid
only for small film thicknesses (Frenkel 1992). We, however, shall use equation (5.3)
to investigate the flow of a thick film.

Linear analysis of (5.3) gives

ω = σ−1A

[
k2

(1 + r0)2
− k4

]
, (5.5)



388 I. L. Kliakhandler, S. H. Davis and S. G. Bankoff

Distance Speed Height Minimal
between of drops, of drops, thickness

drops, cm cm s−1 mm of film, mm

Experiment 0.62 0.54 1.020 0.20
Simulations 0.72 0.80 1.025 0.19

Table 3. Comparison of experimental results with simulations.

where

A =
1

16(1 + r0)

[
−3− 12r0 − 14r2

0 − 4r3
0 + 4(1 + r0)

4 log
1 + r0

r0

]
. (5.6)

Comparison of dispersion relations (5.5) with the exact dispersion relations is given
in figure 3. It is seen that the asymptotic dispersion relation (5.5) gives excellent
approximations of the exact relation when the film is thin, figure 3(b). The most
unstable mode of approximate model (5.5) coincides with that of Rayleigh (1878) and
the cut-off wavenumbers for the approximate and exact dispersion relations coincide.
The agreement between the two dispersion relations for the thick film, figure 3(a), is
qualitatively good and demonstrates that (5.3) is a reasonable model.

6. Results of numerical simulations
Equation (5.3) subject to periodic boundary conditions was simulated by a stan-

dard pseudospectral technique. The Runge–Kutta fourth-order scheme was used for
the time advance. The spatial discretization was such that the typical wavelength
λ = 2π/km of the most unstable wavenumber km was covered by at least 12 points to
ensure fair resolution of the computed solutions. Conservation of the flow invariant
h0r0 +h2

0/2 was carefully monitored. The typical time step was 10−3. Tests with smaller
time steps gave indistinguishable results. Random small-amplitude fields or periodic
functions were used as initial conditions. Typically, the simulations were conducted
on long spatial intervals (up to 40λ), though only part of the intervals are presented
on the figures to make the wavy structures clear.

The main results of the simulations are as follows. For the small-amplitude random
initial data and data for regime (b) (table 2), model (5.3) gives typical periodic
structures shown on figure 4(a). The amplitude, length and form of the drops are very
close to those of figure 1(b). A comparison of the experiment with simulation in this
case is given in table 3.

For regime (c), the small-amplitude initial data give similar periodic structures.
However, for long-scale periodic initial data with noise, the structure of the waves
is close to those observed in figure 4(a). In the latter case, the amplitude of the
drops is 1.2 mm, as in the experiment. The form of the bead pattern is close to that
observed in regime (c), though the distance between the drops is about half that in
the experiment. It is remarkable that for the small flow rate, regime (c), the periodic
flow in experiment extends up to the source and is similar to the periodic initial
conditions: the liquid leaks down to the fibre periodically in the form of drops. The
interaction between the large drops and small varicosities is shown in figure 4(b).
The large drops collide with small drops and subsume them; the whole process is
periodic in time. The dynamics in figure 4(b) is close to the experimentally observed
structures on figure 1(c). Regime (a) however was not reproduced by model (5.3). The
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Figure 4. Solution of model (5.3): (a) profiles for regimes (b) and (c); (b) spatio-temporal
dynamics for regime (c).

main feature of the regime, the virtually uniform interface between large drops, is not
captured.

Note that two different scenarios have been proposed to explain the formation
of the pulses with a smooth interface between them in thin weakly nonlinear films.
Chang, Demekhin & Kalaidin (1998) considered a drainage mechanism, leading to
the generation of the smooth film between the beads on the basis of a generalized
KS equation including dispersion (Kawahara equation). The distance between the
beads separated by smooth film might be three times longer than the most unstable
wave. The Kawahara equation is derived for thin planar films near the onset the
instability and is weakly nonlinear, so that it does not apply to the present situation
of thick strongly nonlinear axisymmetric films and beads. However, the analysis done
by Chang et al.(1998) does reveal qualitative features similar to those observed in all
three regimes.

On the other hand, Kalliadasis & Chang (1994), Kerchman & Frenkel (1994),
Kerchman (1995), Chang & Demekhin (1999) considered the strongly nonlinear
model derived by Frenkel (1992) for axisymmetric thin films. Kerchman & Frenkel
(1994) and Kerchman (1995) found that the model produces large pulses with a
flat interface between them. Kalliadasis & Chang (1994) constructed a solitary pulse
solution and Chang & Demekhin (1999) found the asymptotic blow-up solutions in
Frenkel’s equation. The tendency of the solutions of Frenkel’s equation to blow-up
was interpreted as a predisposition of the system to the drop formation.

The dynamics of thick films observed in regime (a) is strongly nonlinear and
appears in cylindrical geometry. Therefore, it is not clear which scenarios described
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above and discovered in weakly nonlinear models of planar thin films are responsible
for the formation of large beads (pulses) in regime (a).

7. Conclusion
This paper investigates the formation of viscous beads on a thin fibre experimentally

and theoretically. Three different regimes of bead dynamics are observed for creeping
flows as shown in figure 1. A simple model equation based on consideration of the
Stokes flow is proposed and results of a numerical simulation are in a good agreement
with two of three modes seen in experiment.

This work was supported by the Engineering Research Program of the Office of
Basic Energy Sciences at the Department of Energy.
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